The long view of triadic resonance instability in finite-width internal gravity wave beams

This article presents our exploration into how a finite-width internal gravity wave beam is modified by triadic resonance instability. We present both experimental and weakly nonlinear modelling to examine this instability mechanism, in which a primary wave beam generates two secondary wave beams of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-12, Vol.953, Article A22
Hauptverfasser: Grayson, K.M., Dalziel, Stuart B., Lawrie, Andrew G.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents our exploration into how a finite-width internal gravity wave beam is modified by triadic resonance instability. We present both experimental and weakly nonlinear modelling to examine this instability mechanism, in which a primary wave beam generates two secondary wave beams of lower frequencies and shorter length scales. Through a versatile experimental set-up, we examine how this instability evolves over hundreds of buoyancy periods. Unlike predictions from previous zero-dimensional weakly nonlinear theory, we find that the wave does not monotonically approach a saturated equilibrium of triadic interactions; rather, the amplitudes and structures of the constituent beams continue to modulate without ever reaching a steady equilibrium. To understand this behaviour, we develop a weakly nonlinear approach to account for the spatiotemporal evolution of the amplitudes and structures of the beams over slow time scales and long distances, and explore the consequences using a numerical scheme to solve the resulting equations. Through this approach, we establish that the evolution of the instability is remarkably sensitive to the spatiotemporal triadic configuration for the system and how part of the observed modulations can be attributed to a competition between the linear growth rate of the secondary wave beams and the finite residence time of the triadic perturbations within the underlying primary beam.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2022.914