Locally Weighted Censored Quantile Regression

Censored quantile regression offers a valuable supplement to Cox proportional hazards model for survival analysis. Existing work in the literature often requires stringent assumptions, such as unconditional independence of the survival time and the censoring variable or global linearity at all quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2009-09, Vol.104 (487), p.1117-1128
Hauptverfasser: Wang, Huixia Judy, Wang, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Censored quantile regression offers a valuable supplement to Cox proportional hazards model for survival analysis. Existing work in the literature often requires stringent assumptions, such as unconditional independence of the survival time and the censoring variable or global linearity at all quantile levels. Moreover, some of the work uses recursive algorithms, making it challenging to derive asymptotic normality. To overcome these drawbacks, we propose a new locally weighted censored quantile regression approach that adopts the redistribution-of-mass idea and employs a local reweighting scheme. Its validity only requires conditional independence of the survival time and the censoring variable given the covariates, and linearity at the particular quantile level of interest. Our method leads to a simple algorithm that can be conveniently implemented with R software. Applying recent theory of M-estimation with infinite dimensional parameters, we establish the consistency and asymptotic normality of the proposed estimator. The proposed method is studied via simulations and is illustrated with the analysis of an acute myocardial infarction dataset.
ISSN:0162-1459
1537-274X
DOI:10.1198/jasa.2009.tm08230