Existence and Multiplicity of Sign-Changing Solutions for Klein–Gordon Equation Coupled with Born–Infeld Theory with Subcritical Exponent
In this paper we consider the following Klein–Gordon equation coupled with Born–Infeld theory - Δ u + [ m 2 - ( ω + ϕ ) 2 ] u = | u | p - 2 u in R 3 , Δ ϕ + β Δ 4 ϕ = 4 π ( ω + ϕ ) u 2 in R 3 , where 2 < p < 6 , ω > 0 , β > 0 and m is a real constant. Assuming that 0 < ω < p 2 - 1...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2023-03, Vol.22 (1), Article 7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the following Klein–Gordon equation coupled with Born–Infeld theory
-
Δ
u
+
[
m
2
-
(
ω
+
ϕ
)
2
]
u
=
|
u
|
p
-
2
u
in
R
3
,
Δ
ϕ
+
β
Δ
4
ϕ
=
4
π
(
ω
+
ϕ
)
u
2
in
R
3
,
where
2
<
p
<
6
,
ω
>
0
,
β
>
0
and
m
is a real constant. Assuming that
0
<
ω
<
p
2
-
1
|
m
|
and
2
<
p
<
4
or
0
<
ω
<
|
m
|
and
4
≤
p
<
6
, we obtain the existence and multiplicity of sign-changing solutions via the method of invariant sets of descending flow. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-022-00709-4 |