Approximation of functions from Korobov spaces by deep convolutional neural networks

The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2022-12, Vol.48 (6), Article 84
Hauptverfasser: Mao, Tong, Zhou, Ding-Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Advances in computational mathematics
container_volume 48
creator Mao, Tong
Zhou, Ding-Xuan
description The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.
doi_str_mv 10.1007/s10444-022-09991-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2747917342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747917342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Ap4DnaPKSTTbHUtSKBS_1HHbTRFrbzZrs1vbvTbuCN08z8GaGN4PQLaP3jFL1kBgVQhAKQKjWmpH9GRqxQgHR-XCeOWWaKCbLS3SV0ppSqqUqRmgxadsY9qtt1a1Cg4PHvm_skSfsY9ji1xBDHXY4tZV1CdcHvHSuxTY0u7Dpj8JqgxvXxxN03yF-pmt04atNcje_OEbvT4-L6YzM355fppM5sVzyjkglvVa8BFsIaUEy5kuvqiXoQpSeakFdaaV2XlrNbA0AXhYVtxQsq4GXfIzuhtxc4at3qTPr0Mf8UDKghNJMcQFZBYPKxpBSdN60MfeNB8OoOa5nhvVMXs-c1jP7bOKDKWVx8-HiX_Q_rh9WxnOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747917342</pqid></control><display><type>article</type><title>Approximation of functions from Korobov spaces by deep convolutional neural networks</title><source>SpringerNature Journals</source><creator>Mao, Tong ; Zhou, Ding-Xuan</creator><creatorcontrib>Mao, Tong ; Zhou, Ding-Xuan</creatorcontrib><description>The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-022-09991-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial neural networks ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Visualization</subject><ispartof>Advances in computational mathematics, 2022-12, Vol.48 (6), Article 84</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383</citedby><cites>FETCH-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383</cites><orcidid>0000-0003-0224-9216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-022-09991-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-022-09991-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Mao, Tong</creatorcontrib><creatorcontrib>Zhou, Ding-Xuan</creatorcontrib><title>Approximation of functions from Korobov spaces by deep convolutional neural networks</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMFKAzEUDKJgrf6Ap4DnaPKSTTbHUtSKBS_1HHbTRFrbzZrs1vbvTbuCN08z8GaGN4PQLaP3jFL1kBgVQhAKQKjWmpH9GRqxQgHR-XCeOWWaKCbLS3SV0ppSqqUqRmgxadsY9qtt1a1Cg4PHvm_skSfsY9ji1xBDHXY4tZV1CdcHvHSuxTY0u7Dpj8JqgxvXxxN03yF-pmt04atNcje_OEbvT4-L6YzM355fppM5sVzyjkglvVa8BFsIaUEy5kuvqiXoQpSeakFdaaV2XlrNbA0AXhYVtxQsq4GXfIzuhtxc4at3qTPr0Mf8UDKghNJMcQFZBYPKxpBSdN60MfeNB8OoOa5nhvVMXs-c1jP7bOKDKWVx8-HiX_Q_rh9WxnOk</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mao, Tong</creator><creator>Zhou, Ding-Xuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0224-9216</orcidid></search><sort><creationdate>20221201</creationdate><title>Approximation of functions from Korobov spaces by deep convolutional neural networks</title><author>Mao, Tong ; Zhou, Ding-Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Tong</creatorcontrib><creatorcontrib>Zhou, Ding-Xuan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Tong</au><au>Zhou, Ding-Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of functions from Korobov spaces by deep convolutional neural networks</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>48</volume><issue>6</issue><artnum>84</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-022-09991-x</doi><orcidid>https://orcid.org/0000-0003-0224-9216</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2022-12, Vol.48 (6), Article 84
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_journals_2747917342
source SpringerNature Journals
subjects Approximation
Artificial neural networks
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Visualization
title Approximation of functions from Korobov spaces by deep convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20functions%20from%20Korobov%20spaces%20by%20deep%20convolutional%20neural%20networks&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Mao,%20Tong&rft.date=2022-12-01&rft.volume=48&rft.issue=6&rft.artnum=84&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-022-09991-x&rft_dat=%3Cproquest_cross%3E2747917342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747917342&rft_id=info:pmid/&rfr_iscdi=true