Approximation of functions from Korobov spaces by deep convolutional neural networks

The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2022-12, Vol.48 (6), Article 84
Hauptverfasser: Mao, Tong, Zhou, Ding-Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-022-09991-x