The Black-Scholes equation in the presence of arbitrage

We apply Geometric Arbitrage Theory to obtain results in Mathematical Finance, which do not need stochastic differential geometry in their formulation. First, for generic market dynamics given by a subclass of multidimensional Itô processes we specify and prove the equivalence between No-Free-Lunch-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2022-12, Vol.22 (12), p.2155-2170
Hauptverfasser: Farinelli, Simone, Takada, Hideyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply Geometric Arbitrage Theory to obtain results in Mathematical Finance, which do not need stochastic differential geometry in their formulation. First, for generic market dynamics given by a subclass of multidimensional Itô processes we specify and prove the equivalence between No-Free-Lunch-with-Vanishing-Risk (NFLVR) and expected utility maximization. As a by-product, we provide a geometric characterization of the No-Unbounded-Profit-with-Bounded-Risk (NUPBR) condition given by the zero curvature (ZC) condition for this subclass of Itô processes. Finally, we extend the Black-Scholes partial differential equation to markets allowing arbitrage.
ISSN:1469-7688
1469-7696
DOI:10.1080/14697688.2022.2117075