The Black-Scholes equation in the presence of arbitrage
We apply Geometric Arbitrage Theory to obtain results in Mathematical Finance, which do not need stochastic differential geometry in their formulation. First, for generic market dynamics given by a subclass of multidimensional Itô processes we specify and prove the equivalence between No-Free-Lunch-...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2022-12, Vol.22 (12), p.2155-2170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We apply Geometric Arbitrage Theory to obtain results in Mathematical Finance, which do not need stochastic differential geometry in their formulation. First, for generic market dynamics given by a subclass of multidimensional Itô processes we specify and prove the equivalence between No-Free-Lunch-with-Vanishing-Risk (NFLVR) and expected utility maximization. As a by-product, we provide a geometric characterization of the No-Unbounded-Profit-with-Bounded-Risk (NUPBR) condition given by the zero curvature (ZC) condition for this subclass of Itô processes. Finally, we extend the Black-Scholes partial differential equation to markets allowing arbitrage. |
---|---|
ISSN: | 1469-7688 1469-7696 |
DOI: | 10.1080/14697688.2022.2117075 |