Privacy-Enhanced and Verification-Traceable Aggregation for Federated Learning
Federated learning (FL) is a distributed machine learning framework, which allows multiple users to collaboratively train and obtain a global model with high accuracy. Currently, FL is paid more attention by researchers and a growing number of protocols are proposed. This article first analyzes the...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-12, Vol.9 (24), p.24933-24948 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Federated learning (FL) is a distributed machine learning framework, which allows multiple users to collaboratively train and obtain a global model with high accuracy. Currently, FL is paid more attention by researchers and a growing number of protocols are proposed. This article first analyzes the security vulnerabilities of the VerifyNet and VeriFL protocols, and proposes a new aggregation protocol for FL. We use additive homomorphic encryption and double masking to simultaneously protect the user's local model and the aggregated global model while most of the existing protocols only consider the privacy of the local model. Also, linear homomorphic hash and digital signature are used to achieve traceable verification, which means the users can not only verify the aggregation results, but also be able to identify the wrong epoch if the results are wrong. In summary, our protocol can realize the privacy of the local model and global model and achieve verification traceability even if the cloud server colludes with malicious users. The experimental results show that the proposed protocol improves the security of FL without decreasing the efficiency of the users and classification accuracy of the training model. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2022.3194930 |