Dangerous tangents: an application of Γ-convergence to the control of dynamical systems
Inspired by the classical riot model proposed by Granovetter in 1978, we consider a parametric stochastic dynamical system that describes the collective behavior of a large population of interacting agents. By controlling a parameter, a policy maker seeks to minimize her own disutility, which in tur...
Gespeichert in:
Veröffentlicht in: | Decisions in economics and finance 2022-12, Vol.45 (2), p.451-480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by the classical riot model proposed by Granovetter in 1978, we consider a parametric stochastic dynamical system that describes the collective behavior of a large population of interacting agents. By controlling a parameter, a policy maker seeks to minimize her own disutility, which in turn depends on the steady state of the system. We show that this economically sensible optimization is ill-posed and illustrate a novel way to tackle this practical and formal issue. Our approach is based on the
Γ
-convergence of a sequence of mean-regularized instances of the original problem. The corresponding minimum points converge toward a unique value that intuitively is the solution of the original ill-posed problem. Notably, to the best of our knowledge, this is one of the first applications of
Γ
-convergence in economics. |
---|---|
ISSN: | 1593-8883 1129-6569 |
DOI: | 10.1007/s10203-022-00372-z |