Knowledge-Decks: Automatically Generating Presentation Slide Decks of Visual Analytics Knowledge Discovery Applications
Visual Analytics (VA) tools provide ways for users to harness insights and knowledge from datasets. Recalling and retelling user experiences while utilizing VA tools has attracted significant interest. Nevertheless, each user sessions are unique. Even when different users have the same intention whe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Visual Analytics (VA) tools provide ways for users to harness insights and knowledge from datasets. Recalling and retelling user experiences while utilizing VA tools has attracted significant interest. Nevertheless, each user sessions are unique. Even when different users have the same intention when using a VA tool, they may follow different paths and uncover different insights. Current methods of manually processing such data to recall and retell users' knowledge discovery paths may also be time-consuming, especially when there is the need to present users' findings to third parties. This paper presents a novel system that collects user intentions, behavior, and insights during knowledge discovery sessions, automatically structure the data, and extracts narrations of knowledge discovery as PowerPoint slide decks. The system is powered by a Knowledge Graph designed based on a formal and reproducible modeling process. To evaluate our system, we have attached it to two existing VA tools where users were asked to perform pre-defined tasks. Several slide decks and other analysis metrics were extracted from the generated Knowledge Graph. Experts scrutinized and confirmed the usefulness of our automated process for using the slide decks to disclose knowledge discovery paths to others and to verify whether the VA tools themselves were effective. |
---|---|
ISSN: | 2331-8422 |