Persistence and extinction of a stochastic AIDS model driven by Lévy jumps

This paper studied a stochastic AIDS model driven by Lévy jumps. We obtained the sufficient conditions for persistence in the mean and extinction. If the modified basic reproduction number R ¯ > 1 , AIDS is persistent in the mean. If the modified basic reproduction number R ~ < 1 , AIDS will d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2022-12, Vol.68 (6), p.4317-4330
Hauptverfasser: Qiu, Hong, Huo, Yanzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studied a stochastic AIDS model driven by Lévy jumps. We obtained the sufficient conditions for persistence in the mean and extinction. If the modified basic reproduction number R ¯ > 1 , AIDS is persistent in the mean. If the modified basic reproduction number R ~ < 1 , AIDS will die out. In addition, we find that the smaller the transmission coefficient β i , the faster the disease dies out by numerical simulations. We can conclude that it is possible to reduce the risk of epidemic disease transmission by reduce the transmission coefficient β i of epidemic disease.
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-022-01706-1