Persistence and extinction of a stochastic AIDS model driven by Lévy jumps
This paper studied a stochastic AIDS model driven by Lévy jumps. We obtained the sufficient conditions for persistence in the mean and extinction. If the modified basic reproduction number R ¯ > 1 , AIDS is persistent in the mean. If the modified basic reproduction number R ~ < 1 , AIDS will d...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2022-12, Vol.68 (6), p.4317-4330 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studied a stochastic AIDS model driven by Lévy jumps. We obtained the sufficient conditions for persistence in the mean and extinction. If the modified basic reproduction number
R
¯
>
1
, AIDS is persistent in the mean. If the modified basic reproduction number
R
~
<
1
, AIDS will die out. In addition, we find that the smaller the transmission coefficient
β
i
, the faster the disease dies out by numerical simulations. We can conclude that it is possible to reduce the risk of epidemic disease transmission by reduce the transmission coefficient
β
i
of epidemic disease. |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/s12190-022-01706-1 |