Accelerating LiNGAM Causal Discovery with Massive Parallel Execution on Supercomputer Fugaku

Statical causal discovery is an approach to infer the causal relationship between observed variables whose causalities are not revealed. LiNGAM (Linear Non-Gaussian Acyclic Model), an algorithm for causal discovery, can calculate the causal relationship uniquely if the independent components of vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2022/12/01, Vol.E105.D(12), pp.2032-2039
Hauptverfasser: MATSUDA, Kazuhito, KURIHARA, Kouji, KAWAKAMI, Kentaro, YAMAZAKI, Masafumi, YAMADA, Fuyuka, TABARU, Tsuguchika, YOKOYAMA, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Statical causal discovery is an approach to infer the causal relationship between observed variables whose causalities are not revealed. LiNGAM (Linear Non-Gaussian Acyclic Model), an algorithm for causal discovery, can calculate the causal relationship uniquely if the independent components of variables are assumed to be non-Gaussian. However, use-cases of LiNGAM are limited because of its O(d3x) computational complexity, where dx is the number of variables. This paper shows two approaches to accelerate LiNGAM causal discovery: SIMD utilization for LiNGAM's mathematical matrixes operations and MPI parallelization. We evaluate the implementation with the supercomputer Fugaku. Using 96 nodes of Fugaku, our improved version can achieve 17,531 times faster than the original OSS implementation (completed in 17.7 hours).
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2022PAP0007