Unveiling the Protonation Kinetics‐Dependent Selectivity in Nitrogen Electroreduction: Achieving 75.05 % Selectivity

While higher selectivity of nitrogen reduction reaction (NRR) to ammonia (NH3) is always achieved in alkali, the selectivity dependence on nitrogen (N2) protonation and mechanisms therein are unrevealed. Herein, we profile how the NRR selectivity theoretically relies upon the first protonation that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-12, Vol.61 (50), p.n/a
Hauptverfasser: Liu, Yang, Wang, Lingling, Chen, Lin, Wang, Hongdan, Jadhav, Amol R., Yang, Taehun, Wang, Yixuan, Zhang, Jinqiang, Kumar, Ashwani, Lee, Jinsun, Bui, Viet Q., Kim, Min Gyu, Lee, Hyoyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While higher selectivity of nitrogen reduction reaction (NRR) to ammonia (NH3) is always achieved in alkali, the selectivity dependence on nitrogen (N2) protonation and mechanisms therein are unrevealed. Herein, we profile how the NRR selectivity theoretically relies upon the first protonation that is collectively regulated by proton (H) abundance and adsorption‐desorption, along with intermediate‐*NNH formation. By incorporating electronic metal modulators (M=Co, Ni, Cu, Zn) in nitrogenase‐imitated model‐iron polysulfide (FeSx), a series of FeMSx catalysts with tailorable protonation kinetics are obtained. The key intermediates behaviors traced by in situ FT‐IR and Raman spectroscopy and operando electrochemical impedance spectroscopy demonstrate the strong protonation kinetics‐dependent selectivity that mathematically follows a log‐linear Bradley curve. Strikingly, FeCuSx exhibits a record‐high selectivity of 75.05 % at −0.1 V (vs. RHE) for NH3 production in 0.1 M KOH electrolyte. Tailoring the key intermediates′ behaviors on the catalyst‘s surface through modifying the electronic interplay among active sites can realize the adjusting of protonation kinetics. This work unravels the crucial factors of protonation kinetics to obtain superior alkaline nitrogen electroreduction selectivity and describes the protonation kinetics‐independent selectivity relation, giving a deep understanding of the complicated and elusive nitrogen reduction reaction (NRR) mechanisms.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202209555