Positive rational number of the form \(\varphi(km^{a})/\varphi(ln^{b})\)
Let \(k, l, a\) and \(b\) be positive integers with \(\max\{a, \, b\}\ge2\). In this paper, we show that every positive rational number can be written as the form \(\varphi(km^{a})/\varphi(ln^{b})\), where \(m, \, n\in\mathbb{N}\) if and only if \(\gcd(a, \,b)=1\) or \((a, b, k, l)=(2,2, 1, 1)\). Mo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(k, l, a\) and \(b\) be positive integers with \(\max\{a, \, b\}\ge2\). In this paper, we show that every positive rational number can be written as the form \(\varphi(km^{a})/\varphi(ln^{b})\), where \(m, \, n\in\mathbb{N}\) if and only if \(\gcd(a, \,b)=1\) or \((a, b, k, l)=(2,2, 1, 1)\). Moreover, if \(\gcd(a, b)>1\), then the proper representation of such representation is unique. |
---|---|
ISSN: | 2331-8422 |