Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure
We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2023-02, Vol.190 (2), Article 30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 190 |
creator | Junge, Marius Laracuente, Nicholas Rouzé, Cambyse |
description | We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove estimates on the exponential convergence in relative entropy of quantum Markov systems which preserve a fixed state. This leads to estimates for the decay to equilibrium for coupled systems and to estimates for mixed state preparation times using Lindblad operators. Our techniques also apply to discrete time settings, where we show that the strong data processing inequality constant of a quantum channel can be controlled by that of a corresponding unital channel. |
doi_str_mv | 10.1007/s10955-022-03026-x |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2745607509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728850074</galeid><sourcerecordid>A728850074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-315cae418607ba2c4f3fad877637fa8ab49524f89d8dcbdc18738cead9fd2dde3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EUoeWP9BVJFYsUvyM7eVoBG2lgS5K2Vo3fsy4ysStnYzaf4-HINghLyzd-52ro3MQuiT4imAsPxeCtRAtprTFDNOufXmDVkRI2uqOsLdohU8rLok4Q-9LecQYa6XFCv28n6CPQ5xemxSabdpBjtP-EG1zn_o0-GNzO_rnGSoRfWkeRudzA833NNp0OMwTTPHom80exp0_XfjmoczZX6B3AYbiP_z5z9HD1y8_Njft9u76drPetpZpOrWMCAueE9Vh2QO1PLAATknZMRlAQc-1oDwo7ZSzvbNESaasB6eDo855do4-LXf3MJinHA-QX02CaG7WW3OaYa50hzk5ksp-XNinnJ5nXybzmOY8VnuGSi6qBYF1pa4WageDN3EMacpg63O-ppJGH2KdryVVStTkeRXQRWBzKiX78NcHweZUjlnKMbUB87sc81JFbBGVCtfo8j8v_1H9AhS5koM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745607509</pqid></control><display><type>article</type><title>Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Junge, Marius ; Laracuente, Nicholas ; Rouzé, Cambyse</creator><creatorcontrib>Junge, Marius ; Laracuente, Nicholas ; Rouzé, Cambyse</creatorcontrib><description>We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove estimates on the exponential convergence in relative entropy of quantum Markov systems which preserve a fixed state. This leads to estimates for the decay to equilibrium for coupled systems and to estimates for mixed state preparation times using Lindblad operators. Our techniques also apply to discrete time settings, where we show that the strong data processing inequality constant of a quantum channel can be controlled by that of a corresponding unital channel.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-022-03026-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Data processing ; Estimates ; Inequalities ; Logarithms ; Markov processes ; Mathematical and Computational Physics ; Operators (mathematics) ; Perturbation ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2023-02, Vol.190 (2), Article 30</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-315cae418607ba2c4f3fad877637fa8ab49524f89d8dcbdc18738cead9fd2dde3</citedby><cites>FETCH-LOGICAL-c392t-315cae418607ba2c4f3fad877637fa8ab49524f89d8dcbdc18738cead9fd2dde3</cites><orcidid>0000-0003-0966-9272 ; 0000-0001-7712-6582 ; 0000-0001-7802-0616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-022-03026-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-022-03026-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04896041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Laracuente, Nicholas</creatorcontrib><creatorcontrib>Rouzé, Cambyse</creatorcontrib><title>Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove estimates on the exponential convergence in relative entropy of quantum Markov systems which preserve a fixed state. This leads to estimates for the decay to equilibrium for coupled systems and to estimates for mixed state preparation times using Lindblad operators. Our techniques also apply to discrete time settings, where we show that the strong data processing inequality constant of a quantum channel can be controlled by that of a corresponding unital channel.</description><subject>Analysis</subject><subject>Data processing</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Logarithms</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Perturbation</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EUoeWP9BVJFYsUvyM7eVoBG2lgS5K2Vo3fsy4ysStnYzaf4-HINghLyzd-52ro3MQuiT4imAsPxeCtRAtprTFDNOufXmDVkRI2uqOsLdohU8rLok4Q-9LecQYa6XFCv28n6CPQ5xemxSabdpBjtP-EG1zn_o0-GNzO_rnGSoRfWkeRudzA833NNp0OMwTTPHom80exp0_XfjmoczZX6B3AYbiP_z5z9HD1y8_Njft9u76drPetpZpOrWMCAueE9Vh2QO1PLAATknZMRlAQc-1oDwo7ZSzvbNESaasB6eDo855do4-LXf3MJinHA-QX02CaG7WW3OaYa50hzk5ksp-XNinnJ5nXybzmOY8VnuGSi6qBYF1pa4WageDN3EMacpg63O-ppJGH2KdryVVStTkeRXQRWBzKiX78NcHweZUjlnKMbUB87sc81JFbBGVCtfo8j8v_1H9AhS5koM</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Junge, Marius</creator><creator>Laracuente, Nicholas</creator><creator>Rouzé, Cambyse</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0966-9272</orcidid><orcidid>https://orcid.org/0000-0001-7712-6582</orcidid><orcidid>https://orcid.org/0000-0001-7802-0616</orcidid></search><sort><creationdate>20230201</creationdate><title>Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure</title><author>Junge, Marius ; Laracuente, Nicholas ; Rouzé, Cambyse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-315cae418607ba2c4f3fad877637fa8ab49524f89d8dcbdc18738cead9fd2dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Data processing</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Logarithms</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Perturbation</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Laracuente, Nicholas</creatorcontrib><creatorcontrib>Rouzé, Cambyse</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junge, Marius</au><au>Laracuente, Nicholas</au><au>Rouzé, Cambyse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>190</volume><issue>2</issue><artnum>30</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove estimates on the exponential convergence in relative entropy of quantum Markov systems which preserve a fixed state. This leads to estimates for the decay to equilibrium for coupled systems and to estimates for mixed state preparation times using Lindblad operators. Our techniques also apply to discrete time settings, where we show that the strong data processing inequality constant of a quantum channel can be controlled by that of a corresponding unital channel.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-022-03026-x</doi><orcidid>https://orcid.org/0000-0003-0966-9272</orcidid><orcidid>https://orcid.org/0000-0001-7712-6582</orcidid><orcidid>https://orcid.org/0000-0001-7802-0616</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2023-02, Vol.190 (2), Article 30 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2745607509 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Data processing Estimates Inequalities Logarithms Markov processes Mathematical and Computational Physics Operators (mathematics) Perturbation Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Logarithmic%20Sobolev%20Inequalities%20Under%20a%20Noncommutative%20Change%20of%20Measure&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Junge,%20Marius&rft.date=2023-02-01&rft.volume=190&rft.issue=2&rft.artnum=30&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-022-03026-x&rft_dat=%3Cgale_hal_p%3EA728850074%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745607509&rft_id=info:pmid/&rft_galeid=A728850074&rfr_iscdi=true |