Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure
We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2023-02, Vol.190 (2), Article 30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove estimates on the exponential convergence in relative entropy of quantum Markov systems which preserve a fixed state. This leads to estimates for the decay to equilibrium for coupled systems and to estimates for mixed state preparation times using Lindblad operators. Our techniques also apply to discrete time settings, where we show that the strong data processing inequality constant of a quantum channel can be controlled by that of a corresponding unital channel. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-022-03026-x |