Stability of Logarithmic Sobolev Inequalities Under a Noncommutative Change of Measure

We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2023-02, Vol.190 (2), Article 30
Hauptverfasser: Junge, Marius, Laracuente, Nicholas, Rouzé, Cambyse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize Holley–Stroock’s perturbation argument from commutative to finite dimensional quantum Markov semigroups. As a consequence, results on (complete) modified logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quantum Markov processes can be used to prove estimates on the exponential convergence in relative entropy of quantum Markov systems which preserve a fixed state. This leads to estimates for the decay to equilibrium for coupled systems and to estimates for mixed state preparation times using Lindblad operators. Our techniques also apply to discrete time settings, where we show that the strong data processing inequality constant of a quantum channel can be controlled by that of a corresponding unital channel.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-022-03026-x