Cross-linked lignin/agarose hydrogels coated with iron oxide magnetic nanoparticles for in vitro hyperthermia cancer therapy

Magnetic hydrogel nanobiocomposites with new biomimetic features have emerged as a new generation of biocompatible structures in biomedical approaches, especially cancer therapy. In this regard, a novel nanobiocomposite is designed and synthesized based on the formation of cross-linked lignin/agaros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2022-12, Vol.37 (23), p.4392-4402
Hauptverfasser: Eivazzadeh-Keihan, Reza, Khalili, Farzane, Radinekiyan, Fateme, Maleki, Ali, Mahdavi, Mohammad, Bani, Milad Salimi, Bahreinizad, Hossein, Babaniamansour, Parto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic hydrogel nanobiocomposites with new biomimetic features have emerged as a new generation of biocompatible structures in biomedical approaches, especially cancer therapy. In this regard, a novel nanobiocomposite is designed and synthesized based on the formation of cross-linked lignin/agarose hydrogel substrate and its functionalization with Fe 3 O 4 magnetic nanoparticles. The physical and chemical features of magnetic cross-linked lignin/agarose nanobiocomposite were characterized using FT-IR, EDX, FE-SEM, TEM, XRD, VSM analyses and the swelling ratio and sol–gel fraction tests. Given the in vitro cytotoxicity assay and applying the highest concentration (1000 μg/mL) of this new nanobiocomposite, the cell viability percentage of Hu02 cell line was calculated 91.05% after 72 h. Furthermore, the potential of this biocompatible and magnetic responsive nanostructure was assessed for magnetic hyperthermia application. Among different concentrations (1 mg/mL, 2 mg/mL, 5 mg/mL, and 10 mg/mL), the maximum amount of specific absorption rate (63.11 W/g) was determined by the lowest concentration of nanobiocomposite (l mg/mL). Therefore, it can be mentioned that this biocompatible nanobiocomposite can be considered as a suitable platform for magnetic fluid hyperthermia and cancer treatment. Graphical abstract Magnetic lignin/agarose hydrogel as a novel nanobiocomposite for hyperthermia application.
ISSN:0884-2914
2044-5326
DOI:10.1557/s43578-022-00819-4