The Space of Pseudofunctions with Application to Disjointness Preserving Mappings
Let G be a locally compact group. In this short note, we study the space of pseudofunctions, denoted P F Φ ( G ) , associated with the Orlicz space L Φ ( G ) , where Φ is a Young function satisfying the Δ 2 -condition. We show that the dual of P F Φ ( G ) is a commutative Banach algebra. We also stu...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2023-02, Vol.20 (1), Article 5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a locally compact group. In this short note, we study the space of pseudofunctions, denoted
P
F
Φ
(
G
)
,
associated with the Orlicz space
L
Φ
(
G
)
,
where
Φ
is a Young function satisfying the
Δ
2
-condition. We show that the dual of
P
F
Φ
(
G
)
is a commutative Banach algebra. We also study the space of multipliers from the Orlicz Figà–Talamanca Herz algebra
A
Φ
(
G
)
(introduced by the authors in Indag Math 30:340–354, 2019) to the dual of
P
M
Ψ
(
G
)
and use it to show that the space of bounded multipliers of
A
Φ
(
G
)
is a dual space. Finally, we characterize the disjointness preserving mappings between two Orlicz Figà–Talamanca Herz algebras. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-02203-2 |