A Comparison of Multi-Label Text Classification Models in Research Articles Labeled With Sustainable Development Goals

The classification of scientific articles aligned to Sustainable Development Goals is crucial for research institutions and universities when assessing their influence in these areas. Machine learning enables the implementation of massive text data classification tasks. The objective of this study i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.123534-123548
Hauptverfasser: Morales-Hernandez, Roberto Carlos, Jaguey, Joaquin Gutierrez, Becerra-Alonso, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classification of scientific articles aligned to Sustainable Development Goals is crucial for research institutions and universities when assessing their influence in these areas. Machine learning enables the implementation of massive text data classification tasks. The objective of this study is to apply Natural Language Processing techniques to articles from peer-reviewed journals to facilitate their classification according to the 17 Sustainable Development Goals of the 2030 Agenda. This article compares the performance of multi-label text classification models based on a proposed framework with datasets of different characteristics. The results show that the combination of Label Powerset (a transformation method) with Support Vector Machine (a classification algorithm) can achieve an accuracy of up to 87% for an imbalanced dataset, 83% for a dataset with the same number of instances per label, and even 91% for a multiclass dataset.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3223094