A new implementation of the geometric method for solving the Eady slice equations

•The geometric method is recast in the language of semi-discrete optimal transport.•We develop a fast adaptive time-stepping algorithm.•Our algorithm uses the latest results from numerical optimal transport.•Numerical results validate the semi-geostrophic approximation. We present a new implementati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2022-11, Vol.469, p.111542, Article 111542
Hauptverfasser: Egan, C.P., Bourne, D.P., Cotter, C.J., Cullen, M.J.P., Pelloni, B., Roper, S.M., Wilkinson, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The geometric method is recast in the language of semi-discrete optimal transport.•We develop a fast adaptive time-stepping algorithm.•Our algorithm uses the latest results from numerical optimal transport.•Numerical results validate the semi-geostrophic approximation. We present a new implementation of the geometric method of Cullen & Purser (1984) for solving the semi-geostrophic Eady slice equations, which model large scale atmospheric flows and frontogenesis. The geometric method is a Lagrangian discretisation, where the PDE is approximated by a particle system. An important property of the discretisation is that it is energy conserving. We restate the geometric method in the language of semi-discrete optimal transport theory and exploit this to develop a fast implementation that combines the latest results from numerical optimal transport theory with a novel adaptive time-stepping scheme. Our results enable a controlled comparison between the Eady-Boussinesq vertical slice equations and their semi-geostrophic approximation. We provide further evidence that weak solutions of the Eady-Boussinesq vertical slice equations converge to weak solutions of the semi-geostrophic Eady slice equations as the Rossby number tends to zero.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2022.111542