optimLanduse: A package for multiobjective land‐cover composition optimization under uncertainty

How to simultaneously combat biodiversity loss and maintain ecosystem functioning while improving human welfare remains an open question. Optimization approaches have proven helpful in revealing the trade‐offs between multiple functions and goals provided by land‐cover configurations. The R package...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2022-12, Vol.13 (12), p.2719-2728
Hauptverfasser: Husmann, Kai, Groß, Volker, Bödeker, Kai, Fuchs, Jasper M., Paul, Carola, Knoke, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How to simultaneously combat biodiversity loss and maintain ecosystem functioning while improving human welfare remains an open question. Optimization approaches have proven helpful in revealing the trade‐offs between multiple functions and goals provided by land‐cover configurations. The R package optimLanduse provides tools for easy and systematic applications of the robust multiobjective land‐cover composition optimization approach of Knoke et al. (2016). The package includes tools to determine the land‐cover composition that best balances the multiple functions a landscape can provide, and tools for understanding and visualizing the reasoning behind these compromises. A tutorial based on a published dataset guides users through the application and highlights possible use‐cases. Illustrating the consequences of alternative ecosystem functions on the theoretically optimal landscape composition provides easily interpretable information for landscape modelling and decision‐making. The package opens the approach of Knoke et al. (2016) to the community of landscape modellers and planners and provides opportunities for straightforward systematic or batch applications.
ISSN:2041-210X
2041-210X
DOI:10.1111/2041-210X.14000