The fermionic integral on loop space and the Pfaffian line bundle

As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the “top degree component” of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign a sensible “top degree component” to certain co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-12, Vol.63 (12), p.123502
Hauptverfasser: Hanisch, Florian, Ludewig, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the “top degree component” of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign a sensible “top degree component” to certain composite forms, obtained by wedging with the exponential (in the exterior algebra) of the canonical presymplectic 2-form on the loop space. This construction is a crucial ingredient for the definition of the supersymmetric path integral on the loop space.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0060355