The fermionic integral on loop space and the Pfaffian line bundle
As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the “top degree component” of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign a sensible “top degree component” to certain co...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2022-12, Vol.63 (12), p.123502 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the “top degree component” of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign a sensible “top degree component” to certain composite forms, obtained by wedging with the exponential (in the exterior algebra) of the canonical presymplectic 2-form on the loop space. This construction is a crucial ingredient for the definition of the supersymmetric path integral on the loop space. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0060355 |