Single‐Atom Sn on Tensile‐Strained ZnO Nanosheets for Highly Efficient Conversion of CO2 into Formate

In general, commercial ZnO owns the poor selectivity and activity toward electroreduction CO2 to formate. In contrast, the numbers of Sn‐based nanomaterials are reported as excellent electrocatalysts for formate production, however, the metallic Sn is more expensive than Zn. In this study, it is dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-12, Vol.12 (45), p.n/a
Hauptverfasser: Zhang, Yingzheng, Jang, Haeseong, Ge, Xin, Zhang, Wei, Li, Zijian, Hou, Liqiang, Zhai, Li, Wei, Xiaoqian, Wang, Zhe, Kim, Min Gyu, Liu, Shangguo, Qin, Qing, Liu, Xien, Cho, Jaephil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In general, commercial ZnO owns the poor selectivity and activity toward electroreduction CO2 to formate. In contrast, the numbers of Sn‐based nanomaterials are reported as excellent electrocatalysts for formate production, however, the metallic Sn is more expensive than Zn. In this study, it is demonstrated that an atomically dispersed Sn on a tensile‐strained ZnO nanosheet (Sn SA/ZnO) shows dramatically improved activity and selectivity for formate production over a wide potential window compared with that of commercial ZnO. Especially, Sn SA/ZnO exhibits 205‐fold mass activity enhancement than the commercial Sn at −1.7 V versus reversible hydrogen electrode normalized with element Sn. The experimental measurements combined with theoretical calculations revealed that Sn SA/ZnO can effectively capture and activate CO2 by its exposed double‐active sites (Sn and O), while the tensile strain on its surface boosts the catalytic selectivity by strengthening the adsorption of the *HCOO intermediate for the electrochemical reduction of CO2 to formate. An atomically dispersed Sn on tensile‐strained ZnO nanosheet catalyst is designed for electrochemical reduction of CO2 to formate, in which the exposed double‐active sites (Sn and O) immensely enhance CO2 adsorption and activation, and tensile strain on its surface strengthens the adsorption of the *HCOO intermediate and thus, synergistically boosts the catalytic activity and selectivity.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202202695