Towards Capacity-adjustable and Scalable Quotient Filter Design for Packet Classification in Software-Defined Networks

Software defined networking (SDN), which can provide a dynamic and configurable network architecture for resource allocation, have been widely employed for efficient massive data traffic management. To accelerate the packet classification process in SDN, the hash-based filters which can support fast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Computer Society 2022, Vol.3, p.1-12
Hauptverfasser: Xie, Minghao, Chen, Quan, Wang, Tao, Wang, Feng, Tao, Yongchao, Cheng, Lianglun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Software defined networking (SDN), which can provide a dynamic and configurable network architecture for resource allocation, have been widely employed for efficient massive data traffic management. To accelerate the packet classification process in SDN, the hash-based filters which can support fast approximate membership query have been widely employed. However, the existing Quotient Filters are limited to fixed size and the number of elements has to be provided in advance. Thus, in this paper, we investigate the first capacity adjustable and scalable quotient filter for dynamic packet classification in SDN. Firstly, a novel Index Independent Quotient Filter (IIQF) is designed, which can adjust its capacity in a more precise level to support dynamic set representation. The algorithms for the operations of insertion, querying, deletion and capacity adjustment of IIQF are also given. Secondly, on the basis of IIQF, a Scalable Index Independent Quotient Filter (SIIQF) is designed to ensure the consistency of the designed quotient filter when adjusting its size. The theoretical performance of the proposed SIIQF, including the error rate, probability of collisions, and the time and space complexity are all analyzed. An instance of employing SIIQF for packet classification with tuple space searching algorithm is also introduced. Finally, the extensive simulations demonstrate the performance gains achieved by the proposed SIIQF compared with the baseline methods.
ISSN:2644-1268
2644-1268
DOI:10.1109/OJCS.2022.3219631