Paley–Wiener-Type Theorem for Functions with Values in Banach Spaces
Let X . X denote a complex Banach space and let L X = BC ℝ → X be the set of all X –valued bounded continuous functions f : ℝ → X . For f ∈ L ( X ) , we define f L X = sup f x X : x ∈ ℝ . Then L X . L X is itself a Banach space. The Beurling spectrum Spec( f ) of a function f ∈ L ( X ) is defined by...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2022-11, Vol.74 (6), p.835-848 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
.
X
denote a complex Banach space and let
L
X
=
BC
ℝ
→
X
be the set of all
X
–valued bounded continuous functions
f
:
ℝ
→
X
. For
f
∈
L
(
X
)
,
we define
f
L
X
= sup
f
x
X
:
x
∈
ℝ
. Then
L
X
.
L
X
is itself a Banach space. The Beurling spectrum Spec(
f
) of a function
f
∈
L
(
X
) is defined by Spec(
f
) =
ζ
∈
ℝ
:
∀
ϵ
>
0
∃
φ
∈
S
ℝ
:
supp
φ
̂
⊂
ζ
−
ϵ
ζ
+
ϵ
φ
∗
f
≢
0
.
We obtain the following Paley–Wiener type theorem for functions with values in Banach spaces:
Let
f
∈
L
(
X
) and let
K
be an arbitrary compact set in
ℝ.
Then Spec(
f
) ⊂
K
if and only if, for any
τ >
0
,
there exists a constant
C
τ
< ∞
such that
P
D
f
L
X
≤
C
τ
f
L
X
sup
x
∈
K
τ
P
x
for all polynomials with complex coefficients
P
(
x
)
,
where the differential operator
P
(
D
) is obtained from
P
(
x
) by the substitution
x
→
−
i
d
dx
,
d
dx
is the ordinary derivative in
L
X
, and
K
(
τ
)
is a
τ
-neighborhood of
K
in
ℂ
. Moreover, we also present the Paley–Wiener-type theorem for integral operators and some special compact sets
K
. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-022-02105-2 |