Downhill running induced DNA damage enhances mitochondrial membrane permeability by facilitating ER-mitochondria signaling

To observe whether downhill running can lead to DNA damage in skeletal muscle cells and changes in mitochondrial membrane permeability and to explore whether the DNA damage caused by downhill running can lead to changes in mitochondrial membrane permeability by regulating the components of the endop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of muscle research and cell motility 2022-12, Vol.43 (4), p.185-193
Hauptverfasser: Li, Junping, Zhao, Binting, Chen, Shengju, Wang, Zhen, Shi, Kexin, Lei, Binkai, Cao, Chunxia, Ke, Zhifei, Wang, Ruiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To observe whether downhill running can lead to DNA damage in skeletal muscle cells and changes in mitochondrial membrane permeability and to explore whether the DNA damage caused by downhill running can lead to changes in mitochondrial membrane permeability by regulating the components of the endoplasmic reticulum mitochondrial coupling structure (MAM). A total of 48 male adult Sprague–Dawley rats were randomly divided into a control group (C, n = 8) and a motor group (E, n = 40). Rats in Group E were further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48) and 72 h (E72) after prescribed exercise, with 8 rats in each group. At each time point, flounder muscle was collected under general anaesthesia. The DNA oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) was detected by immunofluorescence. The expression levels of the DNA damage-related protein p53 in the nucleus and the EI24 protein and reep1 protein in whole cells were detected by Western blot. The colocalization coefficients of the endoplasmic reticulum protein EI24 and the mitochondrial protein Vdac2 were determined by immunofluorescence double staining, and the concentration of Ca 2+ in skeletal muscle mitochondria was detected by a fluorescent probe. Finally, the opening of the mitochondrial membrane permeability transition pore (mPTP) was detected by immunofluorescence. Twelve hours after downhill running, the mitochondrial membrane permeability of the mPTP opened the most ( P  
ISSN:0142-4319
1573-2657
DOI:10.1007/s10974-022-09634-0