On Some Properties of Infinite Iterations of the Functor of Idempotent Probability Measures
In this article, we consider the sets , where is the set of all idempotent probability measures on a compact Hausdorff space and is the set of all probability measures equipped with the point-wise convergence topology. The uniform metrizability of the functor of idempotent probability measures amd i...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2022-08, Vol.43 (8), p.2341-2348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider the sets
, where
is the set of all idempotent probability measures on a compact Hausdorff space
and
is the set of all probability measures equipped with the point-wise convergence topology. The uniform metrizability of the functor
of idempotent probability measures
amd
is studied. It is proved that the functor of idempotent probability measures, acting in the category of compact Hausdorff spaces and in their continuous mappings, is perfect metrizable. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080222110324 |