A quantum dot-based frequency multiplier
Silicon offers the enticing opportunity to integrate hybrid quantum-classical computing systems on a single platform. For qubit control and readout, high-frequency signals are required. Therefore, devices that can facilitate its generation are needed. Here, we present a quantum dot-based radiofreque...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicon offers the enticing opportunity to integrate hybrid quantum-classical computing systems on a single platform. For qubit control and readout, high-frequency signals are required. Therefore, devices that can facilitate its generation are needed. Here, we present a quantum dot-based radiofrequency multiplier operated at cryogenic temperatures. The device is based on the non-linear capacitance-voltage characteristics of quantum dot systems arising from their low-dimensional density of states. We implement the multiplier in a multi-gate silicon nanowire transistor using two complementary device configurations: a single quantum dot coupled to a charge reservoir and a coupled double quantum dot. We study the harmonic voltage conversion as a function of energy detuning, multiplication factor and harmonic phase noise and find near ideal performance up to a multiplication factor of 10. Our results demonstrate a method for high-frequency conversion that could be readily integrated into silicon-based quantum computing systems and be applied to other semiconductors. |
---|---|
ISSN: | 2331-8422 |