Convexity of 2-convex translating and expanding solitons to the mean curvature flow in \(\mathbb{R}^{n+1}\)
In this paper, inspired by the work of Spruck-Xiao [27] and based partly on a result of Derdziński [11], we prove the convexity of complete 2-convex translating and expanding solitons to the mean curvature flow in \(\mathbb{R}^{n+1}\). More precisely, for \(n\geq 3\), we show that any \(n\)-dimensio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, inspired by the work of Spruck-Xiao [27] and based partly on a result of Derdziński [11], we prove the convexity of complete 2-convex translating and expanding solitons to the mean curvature flow in \(\mathbb{R}^{n+1}\). More precisely, for \(n\geq 3\), we show that any \(n\)-dimensional complete 2-convex translating solitons are convex, and any \(n\)-dimensional complete 2-convex self-expanders asymptotic to (strictly) mean convex cones are convex. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2211.14281 |