Broadband Dynamic Rupture Modeling With Fractal Fault Roughness, Frictional Heterogeneity, Viscoelasticity and Topography: The 2016 Mw 6.2 Amatrice, Italy Earthquake
Advances in physics‐based earthquake simulations, utilizing high‐performance computing, have been exploited to better understand the generation and characteristics of the high‐frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challengin...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2022-11, Vol.49 (22), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in physics‐based earthquake simulations, utilizing high‐performance computing, have been exploited to better understand the generation and characteristics of the high‐frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challenging. We here propose a new approach to simulate data‐fused broadband ground motion synthetics using 3D dynamic rupture modeling of the 2016 Mw 6.2 Amatrice, Italy earthquake. We augment a smooth, best‐fitting model from Bayesian dynamic rupture source inversion of strong‐motion data ( |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2022GL098872 |