Force mechanism and conceptual design of reinforced concrete short beam without web reinforcement

Topology Optimization and Finite Element Analysis were carried out for reinforced concrete short beams to reveal the force mechanism. The results show that load-transfer paths for the beams can evolve from Bi-directional Evolutionary Structural Optimization and be mechanically supported by the Miche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Theoretical and Applied Mechanics (Warsaw) 2022-01, Vol.60 (4), p.659-671
Hauptverfasser: Chen, Yi-Jun, Zhang, Hu-Zhi, Lu, Bei-Rong, Huang, Yao-Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topology Optimization and Finite Element Analysis were carried out for reinforced concrete short beams to reveal the force mechanism. The results show that load-transfer paths for the beams can evolve from Bi-directional Evolutionary Structural Optimization and be mechanically supported by the Michell criterion. In the beams, the distribution of a high- -stress compression area appears as a truss under a concentrated load and a tie-arch under a uniform load. The beams do not have much higher bearing capacity but can consume many more materials. Consequently, new design ideas were recommended based on the load transfer paths obtained by Topology Optimization.
ISSN:1429-2955
2543-6309
DOI:10.15632/jtam-pl/155045