Fracture analysis for viscoelastic creep using peridynamic formulation

The purpose of this paper is to provide a peridynamic (PD) model for the prediction of the viscoelastic creep deformation and failure model. The viscoelastic characteristic consists of several stages, namely primary creep, secondary creep, tertiary creep and fracture. A non- linear viscoelastic cree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Theoretical and Applied Mechanics (Warsaw) 2022-01, Vol.60 (4), p.579-591
Hauptverfasser: Azizi, Muhammad Azim, Mohd Zahari, Mohd Zakiyuddin, Abdul Rahim, Sharafiz, Azman, Muhamad Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to provide a peridynamic (PD) model for the prediction of the viscoelastic creep deformation and failure model. The viscoelastic characteristic consists of several stages, namely primary creep, secondary creep, tertiary creep and fracture. A non- linear viscoelastic creep equation based on the internal state variable (ISV) theory covering four creep stages and PD equations are used. The viscoelastic equation is inserted into the PD equation to derive a PD model with two time parameters, i.e., numerical time and vis- coelastic real time. The parameters of the viscoelastic equation are analyzed and optimized. A comparison between numerical and experimental data is performed to validate this PD model. The new PD model for nonlinear viscoelastic creep behavior is confirmed by an ac- ceptable similarity between the numerical and experimental creep strain curves with an error of 15.85%. The nonlinearity of the experimental and numerical data is sufficiently similar as the error between the experimental and numerical curves of the secondary stage strain rate against the load is 21.83%. The factors for the errors are discussed and the variation of the constants in the nonlinear viscoelastic model is also investigated.
ISSN:1429-2955
2543-6309
DOI:10.15632/jtam-pl/152712