Improved multiobjective differential evolution with spherical pruning algorithm for optimizing 3D printing technology parametrization process

Multiobjective optimization approaches have allowed the improvement of technical features in industrial processes, focusing on more accurate approaches for solving complex engineering problems and support decision-making. This paper proposes a hybrid approach to optimize the 3D printing technology p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2022-12, Vol.319 (2), p.1565-1587
Hauptverfasser: Cruz, Luciano Ferreira, Pinto, Flavia Bernardo, Camilotti, Lucas, Santanna, Angelo Marcio Oliveira, Freire, Roberto Zanetti, dos Santos Coelho, Leandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiobjective optimization approaches have allowed the improvement of technical features in industrial processes, focusing on more accurate approaches for solving complex engineering problems and support decision-making. This paper proposes a hybrid approach to optimize the 3D printing technology parameters, integrating the design of experiments and multiobjective optimization methods, as an alternative to classical parametrization design used in machining processes. Alongside the approach, a multiobjective differential evolution with uniform spherical pruning (usp-MODE) algorithm is proposed to serve as an optimization tool. The parametrization design problem considered in this research has the following three objectives: to minimize both surface roughness and dimensional accuracy while maximizing the mechanical resistance of the prototype. A benchmark with non-dominated sorting genetic algorithm II (NSGA-II) and with the classical sp-MODE is used to evaluate the performance of the proposed algorithm. With the increasing complexity of engineering problems and advances in 3D printing technology, this study demonstrates the applicability of the proposed hybrid approach, finding optimal combinations for the machining process among conflicting objectives regardless of the number of decision variables and goals involved. To measure the performance and to compare the results of metaheuristics used in this study, three Pareto comparison metrics have been utilized to evaluate both the convergence and diversity of the obtained Pareto approximations for each algorithm: hyper-volume (H), g-Indicator (G), and inverted generational distance. To all of them, ups-MODE outperformed, with significant figures, the results reached by NSGA-II and sp-MODE algorithms.
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-021-04232-8