A Machine-Learning-Based Detection Method for Snoring and Coughing

Poor sleep quality is a common disease for modern people. Snoring is one of the essential indicators to measure Obstructive Sleep Apnea (OSA). When sleeping, the number of episodes of snoring and coughing are related to the estimated sleep quality. This study proposes a method to detect snoring and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wangji Wanglu Jishu Xuekan = Journal of Internet Technology 2022-01, Vol.23 (6), p.1233-1244
Hauptverfasser: Yang, Chun-Hung, Kuo, Yung-Ming, Chen, I-Chun, Lin, Fan-Min, Chung, Pau-Choo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poor sleep quality is a common disease for modern people. Snoring is one of the essential indicators to measure Obstructive Sleep Apnea (OSA). When sleeping, the number of episodes of snoring and coughing are related to the estimated sleep quality. This study proposes a method to detect snoring and coughing in patients when sleeping. The proposed method includes three stages. Firstly, the nightly sound data for a patient are segmented to each independent event. Secondly, the time domain signal is changed to a frequency domain signal by Fourier Transform, and then the features are extracted from the snoring and coughing episodes. Lastly, the Support Vector Machine (SVM) and the Hidden Markov Model (HMM) are used to recognize snoring and coughing. The result of our experiment demonstrates that this method has good detection performance.
ISSN:1607-9264
1607-9264
2079-4029
DOI:10.53106/160792642022112306007