New invariants of Gromov–Hausdorff limits of Riemannian surfaces with curvature bounded below
Let { X i } be a sequence of compact n -dimensional Alexandrov spaces (e.g. Riemannian manifolds) with curvature uniformly bounded below which converges in the Gromov–Hausdorff sense to a compact Alexandrov space X . The paper (Alesker in Arnold Math J 4(1):1–17, 2018) outlined (without a proof) a c...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2023-02, Vol.217 (1), Article 12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
{
X
i
}
be a sequence of compact
n
-dimensional Alexandrov spaces (e.g. Riemannian manifolds) with curvature uniformly bounded below which converges in the Gromov–Hausdorff sense to a compact Alexandrov space
X
. The paper (Alesker in Arnold Math J 4(1):1–17, 2018) outlined (without a proof) a construction of an integer-valued function on
X
; this function carries additional geometric information on the sequence such as the limit of intrinsic volumes of the
X
i
. In this paper we consider sequences of closed 2-surfaces and (1) prove the existence of such a function in this situation; and (2) classify the functions which may arise from the construction. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-022-00739-x |