New invariants of Gromov–Hausdorff limits of Riemannian surfaces with curvature bounded below

Let { X i } be a sequence of compact n -dimensional Alexandrov spaces (e.g. Riemannian manifolds) with curvature uniformly bounded below which converges in the Gromov–Hausdorff sense to a compact Alexandrov space X . The paper (Alesker in Arnold Math J 4(1):1–17, 2018) outlined (without a proof) a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2023-02, Vol.217 (1), Article 12
Hauptverfasser: Alesker, Semyon, Katz, Mikhail G., Prosanov, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { X i } be a sequence of compact n -dimensional Alexandrov spaces (e.g. Riemannian manifolds) with curvature uniformly bounded below which converges in the Gromov–Hausdorff sense to a compact Alexandrov space X . The paper (Alesker in Arnold Math J 4(1):1–17, 2018) outlined (without a proof) a construction of an integer-valued function on X ; this function carries additional geometric information on the sequence such as the limit of intrinsic volumes of the X i . In this paper we consider sequences of closed 2-surfaces and (1) prove the existence of such a function in this situation; and (2) classify the functions which may arise from the construction.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-022-00739-x