Smart Agriculture : A Novel Multilevel Approach for Agricultural Risk Assessment over Unstructured Data
Detecting opportunities and threats from massive text data is a challenging task for most. Traditionally, companies would rely mainly on structured data to detect and predict risks, losing a huge amount of information that could be extracted from unstructured text data. Fortunately, artificial intel...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detecting opportunities and threats from massive text data is a challenging task for most. Traditionally, companies would rely mainly on structured data to detect and predict risks, losing a huge amount of information that could be extracted from unstructured text data. Fortunately, artificial intelligence came to remedy this issue by innovating in data extraction and processing techniques, allowing us to understand and make use of Natural Language data and turning it into structures that a machine can process and extract insight from. Uncertainty refers to a state of not knowing what will happen in the future. This paper aims to leverage natural language processing and machine learning techniques to model uncertainties and evaluate the risk level in each uncertainty cluster using massive text data. |
---|---|
ISSN: | 2331-8422 |