Existence of the Periodic Peaked Solitary-Wave Solutions to the Camassa–Holm–Kadomtsev–Petviashvili Equation

Considered in this paper is the Camassa–Holm–Kadomtsev–Petviashvili (CH–KP) equation [ 22 ], which can be obtained as a model for the propagation of shallow water waves over a flat bed. It is shown that the existence of periodic peaked solitary-wave solutions to this model equation. In addition, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2022-12, Vol.29 (4), p.905-918
1. Verfasser: Moon, Byungsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considered in this paper is the Camassa–Holm–Kadomtsev–Petviashvili (CH–KP) equation [ 22 ], which can be obtained as a model for the propagation of shallow water waves over a flat bed. It is shown that the existence of periodic peaked solitary-wave solutions to this model equation. In addition, we show that there are a multitude of solitary waves such as smooth, peakons, cuspons, stumpons, and composite like as CH equation.
ISSN:1776-0852
1402-9251
1776-0852
DOI:10.1007/s44198-022-00068-3