Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties
The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties, however with inevitable sacrifice of their electrical conductivity and electromagnetic interference (EMI) shielding performance. This study demonstrates a facile...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-10, Vol.15 (10), p.9520-9530 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties, however with inevitable sacrifice of their electrical conductivity and electromagnetic interference (EMI) shielding performance. This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber (ANF) and Ti
3
C
2
T
x
MXene/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) layers. The ANF layer serves to provide good mechanical stability, whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity. Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer. The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4 µm was shown to display low sheet resistance (2.18 Ω/sq), good EMI shielding effectiveness (EMI SE of 48.1 dB), high mechanical strength (155.9 MPa), and overall toughness (19.4 MJ/m
3
). Moreover, the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions, producing excellent Joule heating (382 °C at 4 V) and photothermal conversion (59.6 °C at 100 mW/m
2
) properties. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-022-4756-x |