Physicochemical QSAR analysis of hERG inhibition revisited: towards a quantitative potency prediction

In an earlier study (Didziapetris R & Lanevskij K (2016). J Comput Aided Mol Des. 30:1175–1188) we collected a database of publicly available hERG inhibition data for almost 6700 drug-like molecules and built a probabilistic Gradient Boosting classifier with a minimal set of physicochemical desc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer-aided molecular design 2022-12, Vol.36 (12), p.837-849
Hauptverfasser: Lanevskij, Kiril, Didziapetris, Remigijus, Sazonovas, Andrius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an earlier study (Didziapetris R & Lanevskij K (2016). J Comput Aided Mol Des. 30:1175–1188) we collected a database of publicly available hERG inhibition data for almost 6700 drug-like molecules and built a probabilistic Gradient Boosting classifier with a minimal set of physicochemical descriptors (log P , p K a , molecular size and topology parameters). This approach favored interpretability over statistical performance but still achieved an overall classification accuracy of 75%. In the current follow-up work we expanded the database (provided in Supplementary Information) to almost 9400 molecules and performed temporal validation of the model on a set of novel chemicals from recently published lead optimization projects. Validation results showed almost no performance degradation compared to the original study. Additionally, we rebuilt the model using AFT (Accelerated Failure Time) learning objective in XGBoost, which accepts both quantitative and censored data often reported in protein inhibition studies. The new model achieved a similar level of accuracy of discerning hERG blockers from non-blockers at 10 µM threshold, which can be conceived as close to the performance ceiling for methods aiming to describe only non-specific ligand interactions with hERG. Yet, this model outputs quantitative potency values ( IC 50 ) and is not tied to a particular classification cut-off. p IC 50 from patch-clamp measurements can be predicted with R 2  ≈ 0.4 and MAE 
ISSN:0920-654X
1573-4951
DOI:10.1007/s10822-022-00483-0