Existence and Uniqueness of Local Weak Solution of D-Dimensional Fractional Micropolar Rayleigh-Bénard Convection System Without Thermal Diffusion in Besov Space
This paper studies the existence and uniqueness of local weak solutions to the d-dimensional ( d ≥ 2 ) fractional micropolar Rayleigh-Bénard convection system without thermal diffusion. When the fractional dissipation index 1 ≤ α < 1 + d 4 , any initial data ( u 0 , ω 0 ) ∈ B 2 , 1 1 + d 2 − 2 α...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2022-12, Vol.182 (1), p.6, Article 6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the existence and uniqueness of local weak solutions to the d-dimensional (
d
≥
2
) fractional micropolar Rayleigh-Bénard convection system without thermal diffusion. When the fractional dissipation index
1
≤
α
<
1
+
d
4
, any initial data
(
u
0
,
ω
0
)
∈
B
2
,
1
1
+
d
2
−
2
α
(
R
d
)
and
θ
0
∈
B
2
,
1
1
+
d
2
−
α
(
R
d
)
yield a local unique weak solution. |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-022-00541-7 |