Model selection via conditional conceptual predictive statistic for mixed and stochastic restricted ridge estimators in linear mixed models

Summary In this article, we characterize the mixed Cp$$ {C}_p $$ (CMCp$$ {\mathrm{CMC}}_p $$) and conditional stochastic restricted ridge Cp$$ {C}_p $$ (CSRRCp$$ {\mathrm{CSRRC}}_p $$) statistics that depend on the expected conditional Gauss discrepancy for the purpose of selecting the most appropri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2022-12, Vol.34 (28), p.n/a
Hauptverfasser: Özkale, M. Revan, Kuran, Özge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary In this article, we characterize the mixed Cp$$ {C}_p $$ (CMCp$$ {\mathrm{CMC}}_p $$) and conditional stochastic restricted ridge Cp$$ {C}_p $$ (CSRRCp$$ {\mathrm{CSRRC}}_p $$) statistics that depend on the expected conditional Gauss discrepancy for the purpose of selecting the most appropriate model when stochastic restrictions are appeared in linear mixed models. Under the known and unknown variance components assumptions, we define two shapes of CMCp$$ {\mathrm{CMC}}_p $$ and CSRRCp$$ {\mathrm{CSRRC}}_p $$ statistics. Then, the article is concluded with both a Monte Carlo simulation study and a real data analysis, supporting the findings of the theoretical results on the CMCp$$ {\mathrm{CMC}}_p $$ and CSRRCp$$ {\mathrm{CSRRC}}_p $$ statistics.
ISSN:1532-0626
1532-0634
DOI:10.1002/cpe.7366