Performance of Structural Geopolymer Concrete Utilising Ferrochrome Ash and Fly Ash as Source Material
An investigation on performances of geopolymer concrete utilizing fly ash (FA) and ferrochrome ash (F.Ash) as source material is presented in this article. The article not only reports on various properties of the geopolymer concrete but also on the structural behavior of reinforced geopolymer concr...
Gespeichert in:
Veröffentlicht in: | Journal of the Institution of Engineers (India). Series A, Civil, architectural, environmental and agricultural Engineering Civil, architectural, environmental and agricultural Engineering, 2022-12, Vol.103 (4), p.1183-1194 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An investigation on performances of geopolymer concrete utilizing fly ash (FA) and ferrochrome ash (F.Ash) as source material is presented in this article. The article not only reports on various properties of the geopolymer concrete but also on the structural behavior of reinforced geopolymer concrete beams under two-point loading. Geopolymer concrete mixtures are prepared by varying the dosage of FA and F.Ash. Flexural properties like moment resistance, deflection and crack pattern of geopolymer reinforced concrete beams containing FA and F.Ash were studied and compared to conventional reinforced concrete beams, in addition to the studies on the strength and durability of geopolymer concrete. Best property values are observed in geopolymer concrete containing FA and F.Ash in proportion 50:50. The flexural strength of reinforced geopolymer concrete beams was found superior to conventional concrete beams. The conventional concrete beam was observed to deflect more during failure than geopolymer beams. It is also observed that a reinforced geopolymer concrete beam made from 50%FA + 50% F.Ash source material takes more load before initiation of crack in comparison to conventional concrete beam. |
---|---|
ISSN: | 2250-2149 2250-2157 |
DOI: | 10.1007/s40030-022-00681-x |