Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories

We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2022-12, Vol.25 (6), p.1379-1387
1. Verfasser: Haugland, Johanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1387
container_issue 6
container_start_page 1379
container_title Algebras and representation theory
container_volume 25
creator Haugland, Johanne
description We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories.
doi_str_mv 10.1007/s10468-021-10071-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737888426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737888426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e893ffbc086b4f1f14d0f063366a711b65bfe3409bb94c0e3476b4a4b22cedc43</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFZfwFPA8-rsn252j6VoFQoFqeBtyZ_ZmhqTuJscvPkOvqFP4tYUvHmZmY_5fTPwEXLJ4JoBpDeBgVSaAmd0rxk1R2TCZimnBlJzHGehFTVcPJ-SsxB2AGCUZhOyng-hzpoS_ffn1yNWPTbJxldZs60xJHGRLH3bv2BTVli87sXQhaR1B2iosx7LZBHrtvUVhnNy4rI64MWhT8nT3e1mcU9X6-XDYr6ihVCip6iNcC4vQKtcOuaYLMGBEkKpLGUsV7PcoZBg8tzIAuKYRjCTOecFloUUU3I13u18-z5g6O2uHXwTX1qeilRrLbmKFB-pwrcheHS289Vb5j8sA7sPyo7B2Rjcr2bWRJMYTSHCzRb93-l_XD90FnJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737888426</pqid></control><display><type>article</type><title>Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories</title><source>SpringerLink Journals - AutoHoldings</source><creator>Haugland, Johanne</creator><creatorcontrib>Haugland, Johanne</creatorcontrib><description>We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories.</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-021-10071-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Associative Rings and Algebras ; Commutative Rings and Algebras ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Non-associative Rings and Algebras</subject><ispartof>Algebras and representation theory, 2022-12, Vol.25 (6), p.1379-1387</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e893ffbc086b4f1f14d0f063366a711b65bfe3409bb94c0e3476b4a4b22cedc43</citedby><cites>FETCH-LOGICAL-c363t-e893ffbc086b4f1f14d0f063366a711b65bfe3409bb94c0e3476b4a4b22cedc43</cites><orcidid>0000-0003-3128-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10468-021-10071-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10468-021-10071-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Haugland, Johanne</creatorcontrib><title>Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories.</description><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Non-associative Rings and Algebras</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM9Kw0AQxhdRsFZfwFPA8-rsn252j6VoFQoFqeBtyZ_ZmhqTuJscvPkOvqFP4tYUvHmZmY_5fTPwEXLJ4JoBpDeBgVSaAmd0rxk1R2TCZimnBlJzHGehFTVcPJ-SsxB2AGCUZhOyng-hzpoS_ffn1yNWPTbJxldZs60xJHGRLH3bv2BTVli87sXQhaR1B2iosx7LZBHrtvUVhnNy4rI64MWhT8nT3e1mcU9X6-XDYr6ihVCip6iNcC4vQKtcOuaYLMGBEkKpLGUsV7PcoZBg8tzIAuKYRjCTOecFloUUU3I13u18-z5g6O2uHXwTX1qeilRrLbmKFB-pwrcheHS289Vb5j8sA7sPyo7B2Rjcr2bWRJMYTSHCzRb93-l_XD90FnJA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Haugland, Johanne</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3128-4715</orcidid></search><sort><creationdate>20221201</creationdate><title>Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories</title><author>Haugland, Johanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e893ffbc086b4f1f14d0f063366a711b65bfe3409bb94c0e3476b4a4b22cedc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Non-associative Rings and Algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haugland, Johanne</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haugland, Johanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>25</volume><issue>6</issue><spage>1379</spage><epage>1387</epage><pages>1379-1387</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-021-10071-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3128-4715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2022-12, Vol.25 (6), p.1379-1387
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_2737888426
source SpringerLink Journals - AutoHoldings
subjects Associative Rings and Algebras
Commutative Rings and Algebras
Isomorphism
Mathematics
Mathematics and Statistics
Non-associative Rings and Algebras
title Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auslander%E2%80%93Reiten%20Triangles%20and%20Grothendieck%20Groups%20of%20Triangulated%20Categories&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Haugland,%20Johanne&rft.date=2022-12-01&rft.volume=25&rft.issue=6&rft.spage=1379&rft.epage=1387&rft.pages=1379-1387&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-021-10071-9&rft_dat=%3Cproquest_cross%3E2737888426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737888426&rft_id=info:pmid/&rfr_iscdi=true