Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories
We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangula...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2022-12, Vol.25 (6), p.1379-1387 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-021-10071-9 |