Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories

We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2022-12, Vol.25 (6), p.1379-1387
1. Verfasser: Haugland, Johanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable objects up to translation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten on the relations for Grothendieck groups. Our approach has applications in the context of Frobenius categories.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-021-10071-9