SentATN: learning sentence transferable embeddings for cross-domain sentiment classification

Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-12, Vol.52 (15), p.18101-18114
Hauptverfasser: Dai, Kuai, Li, Xutao, Huang, Xu, Ye, Yunming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18114
container_issue 15
container_start_page 18101
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 52
creator Dai, Kuai
Li, Xutao
Huang, Xu
Ye, Yunming
description Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-specific features. Besides, these approaches focus on reducing the discrepancy of the source domain and target domain on the word-level. As a result, they cannot fully capture the whole meaning of a sentence, which makes these methods unable to learn enough transferable features. To address these issues, we present a Sentence-level Attention Transfer Network (SentATN) for CDSC, with two distinctive characteristics. Firstly, we design an efficient encoder unit to extract domain-specific features of a sentence. Secondly, SentATN provides a sentence-level adversarial training method, which can better transfer sentiment across domains by capturing complete semantic information of a sentence. Comprehensive experiments have been conducted on extended Amazon review datasets, and the results show that the proposed SentATN performs significantly better than state-of-the-art methods.
doi_str_mv 10.1007/s10489-022-03434-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737807226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737807226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1fdb66bfb6f9156a81aa20c5c82faf8bd182a620c47adefe8d5fb00c2c711f8d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0iapt2XxCxY9uIIHIaT5WLq06Zp0D_5741bw5mUGZt73neFB6JLANQEQN4lAKWsMlGJgJSsxPUIzUgmGRVmLYzSDmpaY8_r9FJ2ltAUAxoDM0MerC-Ni_XxbdE7H0IZNkfLEBeOKMeqQvIu66Vzh-sZZm_ep8EMsTBxSwnbodRsOjrbPpTCdTqn1rdFjO4RzdOJ1l9zFb5-jt_u79fIRr14enpaLFTZMViMm3jacN77hviYV15JoTcFURlKvvWwskVTzPCmFts47aSvfABhqBCFeWjZHV1PuLg6fe5dGtR32MeSTigomJAhKeVbRSXX4PTqvdrHtdfxSBNQPRTVRVJmiOlBUNJvYZEpZHDYu_kX_4_oGVLx3gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737807226</pqid></control><display><type>article</type><title>SentATN: learning sentence transferable embeddings for cross-domain sentiment classification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dai, Kuai ; Li, Xutao ; Huang, Xu ; Ye, Yunming</creator><creatorcontrib>Dai, Kuai ; Li, Xutao ; Huang, Xu ; Ye, Yunming</creatorcontrib><description>Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-specific features. Besides, these approaches focus on reducing the discrepancy of the source domain and target domain on the word-level. As a result, they cannot fully capture the whole meaning of a sentence, which makes these methods unable to learn enough transferable features. To address these issues, we present a Sentence-level Attention Transfer Network (SentATN) for CDSC, with two distinctive characteristics. Firstly, we design an efficient encoder unit to extract domain-specific features of a sentence. Secondly, SentATN provides a sentence-level adversarial training method, which can better transfer sentiment across domains by capturing complete semantic information of a sentence. Comprehensive experiments have been conducted on extended Amazon review datasets, and the results show that the proposed SentATN performs significantly better than state-of-the-art methods.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-022-03434-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Classification ; Coders ; Computer Science ; Feature extraction ; Machines ; Manufacturing ; Mechanical Engineering ; Processes ; Sentiment analysis</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-12, Vol.52 (15), p.18101-18114</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1fdb66bfb6f9156a81aa20c5c82faf8bd182a620c47adefe8d5fb00c2c711f8d3</citedby><cites>FETCH-LOGICAL-c385t-1fdb66bfb6f9156a81aa20c5c82faf8bd182a620c47adefe8d5fb00c2c711f8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-022-03434-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-022-03434-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dai, Kuai</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><title>SentATN: learning sentence transferable embeddings for cross-domain sentiment classification</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-specific features. Besides, these approaches focus on reducing the discrepancy of the source domain and target domain on the word-level. As a result, they cannot fully capture the whole meaning of a sentence, which makes these methods unable to learn enough transferable features. To address these issues, we present a Sentence-level Attention Transfer Network (SentATN) for CDSC, with two distinctive characteristics. Firstly, we design an efficient encoder unit to extract domain-specific features of a sentence. Secondly, SentATN provides a sentence-level adversarial training method, which can better transfer sentiment across domains by capturing complete semantic information of a sentence. Comprehensive experiments have been conducted on extended Amazon review datasets, and the results show that the proposed SentATN performs significantly better than state-of-the-art methods.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Coders</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Sentiment analysis</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJ0iapt2XxCxY9uIIHIaT5WLq06Zp0D_5741bw5mUGZt73neFB6JLANQEQN4lAKWsMlGJgJSsxPUIzUgmGRVmLYzSDmpaY8_r9FJ2ltAUAxoDM0MerC-Ni_XxbdE7H0IZNkfLEBeOKMeqQvIu66Vzh-sZZm_ep8EMsTBxSwnbodRsOjrbPpTCdTqn1rdFjO4RzdOJ1l9zFb5-jt_u79fIRr14enpaLFTZMViMm3jacN77hviYV15JoTcFURlKvvWwskVTzPCmFts47aSvfABhqBCFeWjZHV1PuLg6fe5dGtR32MeSTigomJAhKeVbRSXX4PTqvdrHtdfxSBNQPRTVRVJmiOlBUNJvYZEpZHDYu_kX_4_oGVLx3gw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dai, Kuai</creator><creator>Li, Xutao</creator><creator>Huang, Xu</creator><creator>Ye, Yunming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20221201</creationdate><title>SentATN: learning sentence transferable embeddings for cross-domain sentiment classification</title><author>Dai, Kuai ; Li, Xutao ; Huang, Xu ; Ye, Yunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1fdb66bfb6f9156a81aa20c5c82faf8bd182a620c47adefe8d5fb00c2c711f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Coders</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Kuai</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Kuai</au><au>Li, Xutao</au><au>Huang, Xu</au><au>Ye, Yunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SentATN: learning sentence transferable embeddings for cross-domain sentiment classification</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>52</volume><issue>15</issue><spage>18101</spage><epage>18114</epage><pages>18101-18114</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-specific features. Besides, these approaches focus on reducing the discrepancy of the source domain and target domain on the word-level. As a result, they cannot fully capture the whole meaning of a sentence, which makes these methods unable to learn enough transferable features. To address these issues, we present a Sentence-level Attention Transfer Network (SentATN) for CDSC, with two distinctive characteristics. Firstly, we design an efficient encoder unit to extract domain-specific features of a sentence. Secondly, SentATN provides a sentence-level adversarial training method, which can better transfer sentiment across domains by capturing complete semantic information of a sentence. Comprehensive experiments have been conducted on extended Amazon review datasets, and the results show that the proposed SentATN performs significantly better than state-of-the-art methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-022-03434-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2022-12, Vol.52 (15), p.18101-18114
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2737807226
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Classification
Coders
Computer Science
Feature extraction
Machines
Manufacturing
Mechanical Engineering
Processes
Sentiment analysis
title SentATN: learning sentence transferable embeddings for cross-domain sentiment classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SentATN:%20learning%20sentence%20transferable%20embeddings%20for%20cross-domain%20sentiment%20classification&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Dai,%20Kuai&rft.date=2022-12-01&rft.volume=52&rft.issue=15&rft.spage=18101&rft.epage=18114&rft.pages=18101-18114&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-022-03434-2&rft_dat=%3Cproquest_cross%3E2737807226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737807226&rft_id=info:pmid/&rfr_iscdi=true