SentATN: learning sentence transferable embeddings for cross-domain sentiment classification
Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-sp...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-12, Vol.52 (15), p.18101-18114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cross-domain Sentiment Classification (CDSC) aims to exploit useful knowledge from the source domain to obtain a high-performance classifier on the target domain. Most of the existing methods for CDSC mainly concentrate on extracting domain-shared features, while ignoring the importance of domain-specific features. Besides, these approaches focus on reducing the discrepancy of the source domain and target domain on the word-level. As a result, they cannot fully capture the whole meaning of a sentence, which makes these methods unable to learn enough transferable features. To address these issues, we present a Sentence-level Attention Transfer Network (SentATN) for CDSC, with two distinctive characteristics. Firstly, we design an efficient encoder unit to extract domain-specific features of a sentence. Secondly, SentATN provides a sentence-level adversarial training method, which can better transfer sentiment across domains by capturing complete semantic information of a sentence. Comprehensive experiments have been conducted on extended Amazon review datasets, and the results show that the proposed SentATN performs significantly better than state-of-the-art methods. |
---|---|
ISSN: | 0924-669X 1573-7497 |
DOI: | 10.1007/s10489-022-03434-2 |