On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence

For a number sequence Y = y i i = P + 1 Q ( the numbers P,Q ∈ Z are fixed and P < Q ) , we consider the mean-arithmetic oscillations Ω Y p q = 1 q − p ∑ i = p + 1 q y i − σ Y p q , where σ Y p q = 1 q − p ∑ i = p + 1 q y i is the arithmetic mean of the sequence Y on the segment [ p, q ] and P ≤ p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2022-09, Vol.74 (4), p.586-596
Hauptverfasser: Korenovskyi, A. O., Shanin, R. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 4
container_start_page 586
container_title Ukrainian mathematical journal
container_volume 74
creator Korenovskyi, A. O.
Shanin, R. V.
description For a number sequence Y = y i i = P + 1 Q ( the numbers P,Q ∈ Z are fixed and P < Q ) , we consider the mean-arithmetic oscillations Ω Y p q = 1 q − p ∑ i = p + 1 q y i − σ Y p q , where σ Y p q = 1 q − p ∑ i = p + 1 q y i is the arithmetic mean of the sequence Y on the segment [ p, q ] and P ≤ p < q ≤ Q are arbitrary numbers. These oscillations coincide with the mean-integral oscillations of the function f Y = ∑ i = P + 1 Q y i χ i − 1 i (χ E is the characteristic function of the set E ) : Ω f Y p q = 1 q − p ∫ p q f Y x − σ f Y p q dx , σ f Y p q = 1 q − p ∫ p q f Y x dx , on segments with integer boundaries. The main result of the paper is the following equality: max p q : P ≤ p < q ≤ Q Ω Y p q = max r ∈ Z : P ≤ r ≤ Q max Ω Y P r Ω Y r Q , which is true for any monotone sequence Y. In this case, the main point is the fact that the maximum on the right-hand side is taken only over all integer numbers r. This equality turns into a well-known equality if we take a function f Y instead of the sequence Y, replace the mean-arithmetic oscillations by the mean-integral oscillations and, in addition, assume that the number r on the right-hand side is not necessarily integer.
doi_str_mv 10.1007/s11253-022-02085-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2737734075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729690386</galeid><sourcerecordid>A729690386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-260abc35f3e618597ae7ec78b697ac17f58f6adec8c173703730f29d80e005c33</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC562TTbPJHkvxLy0rqOeQppN2S5vUJD3025u6gjcJQ5Lh_WYej5BbCiMKIO4jpRVnJVRVLpC8ZGdkQLlgZcNEfU4GAGNa8qbhl-Qqxg1AxqQYkNfWFa3D4i34PYZ0LLwt0hqLOWpXTkKX1jtMnSnaaLrtVqfOu3jS6GLunU8-o-_4dUBn8JpcWL2NePN7D8nn48PH9LmctU8v08msNAyaVFY16IVh3DKsqeSN0CjQCLmo89NQYbm0tV6ikfnDBDDBwFbNUgICcMPYkNz1c_fB580xqY0_BJdXqioDgo1B8Kwa9aqV3qLqnPUpaJPPEnedyb5tl_sTUTV1A0zWGah6wAQfY0Cr9qHb6XBUFNQpZNWHrHLI6idkdfLCeihmsVth-PPyD_UNIDh9kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737734075</pqid></control><display><type>article</type><title>On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence</title><source>SpringerNature Journals</source><creator>Korenovskyi, A. O. ; Shanin, R. V.</creator><creatorcontrib>Korenovskyi, A. O. ; Shanin, R. V.</creatorcontrib><description>For a number sequence Y = y i i = P + 1 Q ( the numbers P,Q ∈ Z are fixed and P &lt; Q ) , we consider the mean-arithmetic oscillations Ω Y p q = 1 q − p ∑ i = p + 1 q y i − σ Y p q , where σ Y p q = 1 q − p ∑ i = p + 1 q y i is the arithmetic mean of the sequence Y on the segment [ p, q ] and P ≤ p &lt; q ≤ Q are arbitrary numbers. These oscillations coincide with the mean-integral oscillations of the function f Y = ∑ i = P + 1 Q y i χ i − 1 i (χ E is the characteristic function of the set E ) : Ω f Y p q = 1 q − p ∫ p q f Y x − σ f Y p q dx , σ f Y p q = 1 q − p ∫ p q f Y x dx , on segments with integer boundaries. The main result of the paper is the following equality: max p q : P ≤ p &lt; q ≤ Q Ω Y p q = max r ∈ Z : P ≤ r ≤ Q max Ω Y P r Ω Y r Q , which is true for any monotone sequence Y. In this case, the main point is the fact that the maximum on the right-hand side is taken only over all integer numbers r. This equality turns into a well-known equality if we take a function f Y instead of the sequence Y, replace the mean-arithmetic oscillations by the mean-integral oscillations and, in addition, assume that the number r on the right-hand side is not necessarily integer.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-022-02085-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Arithmetic ; Characteristic functions ; Equality ; Geometry ; Integers ; Mathematics ; Mathematics and Statistics ; Oscillations ; Segments ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2022-09, Vol.74 (4), p.586-596</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-260abc35f3e618597ae7ec78b697ac17f58f6adec8c173703730f29d80e005c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-022-02085-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-022-02085-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Korenovskyi, A. O.</creatorcontrib><creatorcontrib>Shanin, R. V.</creatorcontrib><title>On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>For a number sequence Y = y i i = P + 1 Q ( the numbers P,Q ∈ Z are fixed and P &lt; Q ) , we consider the mean-arithmetic oscillations Ω Y p q = 1 q − p ∑ i = p + 1 q y i − σ Y p q , where σ Y p q = 1 q − p ∑ i = p + 1 q y i is the arithmetic mean of the sequence Y on the segment [ p, q ] and P ≤ p &lt; q ≤ Q are arbitrary numbers. These oscillations coincide with the mean-integral oscillations of the function f Y = ∑ i = P + 1 Q y i χ i − 1 i (χ E is the characteristic function of the set E ) : Ω f Y p q = 1 q − p ∫ p q f Y x − σ f Y p q dx , σ f Y p q = 1 q − p ∫ p q f Y x dx , on segments with integer boundaries. The main result of the paper is the following equality: max p q : P ≤ p &lt; q ≤ Q Ω Y p q = max r ∈ Z : P ≤ r ≤ Q max Ω Y P r Ω Y r Q , which is true for any monotone sequence Y. In this case, the main point is the fact that the maximum on the right-hand side is taken only over all integer numbers r. This equality turns into a well-known equality if we take a function f Y instead of the sequence Y, replace the mean-arithmetic oscillations by the mean-integral oscillations and, in addition, assume that the number r on the right-hand side is not necessarily integer.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Arithmetic</subject><subject>Characteristic functions</subject><subject>Equality</subject><subject>Geometry</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillations</subject><subject>Segments</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC562TTbPJHkvxLy0rqOeQppN2S5vUJD3025u6gjcJQ5Lh_WYej5BbCiMKIO4jpRVnJVRVLpC8ZGdkQLlgZcNEfU4GAGNa8qbhl-Qqxg1AxqQYkNfWFa3D4i34PYZ0LLwt0hqLOWpXTkKX1jtMnSnaaLrtVqfOu3jS6GLunU8-o-_4dUBn8JpcWL2NePN7D8nn48PH9LmctU8v08msNAyaVFY16IVh3DKsqeSN0CjQCLmo89NQYbm0tV6ikfnDBDDBwFbNUgICcMPYkNz1c_fB580xqY0_BJdXqioDgo1B8Kwa9aqV3qLqnPUpaJPPEnedyb5tl_sTUTV1A0zWGah6wAQfY0Cr9qHb6XBUFNQpZNWHrHLI6idkdfLCeihmsVth-PPyD_UNIDh9kA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Korenovskyi, A. O.</creator><creator>Shanin, R. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence</title><author>Korenovskyi, A. O. ; Shanin, R. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-260abc35f3e618597ae7ec78b697ac17f58f6adec8c173703730f29d80e005c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Arithmetic</topic><topic>Characteristic functions</topic><topic>Equality</topic><topic>Geometry</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillations</topic><topic>Segments</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korenovskyi, A. O.</creatorcontrib><creatorcontrib>Shanin, R. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korenovskyi, A. O.</au><au>Shanin, R. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>74</volume><issue>4</issue><spage>586</spage><epage>596</epage><pages>586-596</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>For a number sequence Y = y i i = P + 1 Q ( the numbers P,Q ∈ Z are fixed and P &lt; Q ) , we consider the mean-arithmetic oscillations Ω Y p q = 1 q − p ∑ i = p + 1 q y i − σ Y p q , where σ Y p q = 1 q − p ∑ i = p + 1 q y i is the arithmetic mean of the sequence Y on the segment [ p, q ] and P ≤ p &lt; q ≤ Q are arbitrary numbers. These oscillations coincide with the mean-integral oscillations of the function f Y = ∑ i = P + 1 Q y i χ i − 1 i (χ E is the characteristic function of the set E ) : Ω f Y p q = 1 q − p ∫ p q f Y x − σ f Y p q dx , σ f Y p q = 1 q − p ∫ p q f Y x dx , on segments with integer boundaries. The main result of the paper is the following equality: max p q : P ≤ p &lt; q ≤ Q Ω Y p q = max r ∈ Z : P ≤ r ≤ Q max Ω Y P r Ω Y r Q , which is true for any monotone sequence Y. In this case, the main point is the fact that the maximum on the right-hand side is taken only over all integer numbers r. This equality turns into a well-known equality if we take a function f Y instead of the sequence Y, replace the mean-arithmetic oscillations by the mean-integral oscillations and, in addition, assume that the number r on the right-hand side is not necessarily integer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-022-02085-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2022-09, Vol.74 (4), p.586-596
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_2737734075
source SpringerNature Journals
subjects Algebra
Analysis
Applications of Mathematics
Arithmetic
Characteristic functions
Equality
Geometry
Integers
Mathematics
Mathematics and Statistics
Oscillations
Segments
Statistics
title On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20One%20Property%20of%20the%20Mean-Arithmetic%20Oscillations%20of%20a%20Monotone%20Sequence&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Korenovskyi,%20A.%20O.&rft.date=2022-09-01&rft.volume=74&rft.issue=4&rft.spage=586&rft.epage=596&rft.pages=586-596&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-022-02085-3&rft_dat=%3Cgale_proqu%3EA729690386%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737734075&rft_id=info:pmid/&rft_galeid=A729690386&rfr_iscdi=true