On One Property of the Mean-Arithmetic Oscillations of a Monotone Sequence
For a number sequence Y = y i i = P + 1 Q ( the numbers P,Q ∈ Z are fixed and P < Q ) , we consider the mean-arithmetic oscillations Ω Y p q = 1 q − p ∑ i = p + 1 q y i − σ Y p q , where σ Y p q = 1 q − p ∑ i = p + 1 q y i is the arithmetic mean of the sequence Y on the segment [ p, q ] and P ≤ p...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2022-09, Vol.74 (4), p.586-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a number sequence
Y
=
y
i
i
=
P
+
1
Q
( the numbers
P,Q
∈ Z are fixed and
P < Q
)
,
we consider the mean-arithmetic oscillations
Ω
Y
p
q
=
1
q
−
p
∑
i
=
p
+
1
q
y
i
−
σ
Y
p
q
,
where
σ
Y
p
q
=
1
q
−
p
∑
i
=
p
+
1
q
y
i
is the arithmetic mean of the sequence
Y
on the segment [
p, q
] and
P
≤
p < q
≤
Q
are arbitrary numbers. These oscillations coincide with the mean-integral oscillations of the function
f
Y
=
∑
i
=
P
+
1
Q
y
i
χ
i
−
1
i
(χ
E
is the characteristic function of the set
E
) :
Ω
f
Y
p
q
=
1
q
−
p
∫
p
q
f
Y
x
−
σ
f
Y
p
q
dx
,
σ
f
Y
p
q
=
1
q
−
p
∫
p
q
f
Y
x
dx
,
on segments with integer boundaries.
The main result of the paper is the following equality:
max
p
q
:
P
≤
p
<
q
≤
Q
Ω
Y
p
q
=
max
r
∈
Z
:
P
≤
r
≤
Q
max
Ω
Y
P
r
Ω
Y
r
Q
,
which is true for any monotone sequence
Y.
In this case, the main point is the fact that the maximum on the right-hand side is taken only over all integer numbers
r.
This equality turns into a well-known equality if we take a function
f
Y
instead of the sequence
Y,
replace the mean-arithmetic oscillations by the mean-integral oscillations and, in addition, assume that the number
r
on the right-hand side is not necessarily integer. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-022-02085-3 |