Tangentially driven active polar linear polymers—An analytical study

The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-11, Vol.157 (19), p.194904-194904
Hauptverfasser: Philipps, Christian A., Gompper, Gerhard, Winkler, Roland G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194904
container_issue 19
container_start_page 194904
container_title The Journal of chemical physics
container_volume 157
creator Philipps, Christian A.
Gompper, Gerhard
Winkler, Roland G.
description The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead to linear non-Hermitian equations of motion, which are solved by an eigenfunction expansion in terms of a biorthogonal basis set. Our calculations show that the polymer conformations are independent of activity. However, tangential propulsion strongly impacts the polymer dynamics and yields an active ballistic regime as well as an activity-enhanced long-time diffusive regime, which are both absent in passive systems. The polar forces imply a coupling of modes in the eigenfunction representation, in particular with the translational mode, with a respective strong influence on the polymer dynamics. The total polymer mean-square displacement on scales smaller than the radius of gyration is determined by the active internal dynamics rather than the collective center-of-mass motion, in contrast to active Brownian polymers at large Péclet numbers, reflecting the distinct difference in the propulsion mechanism.
doi_str_mv 10.1063/5.0120493
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2737585203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739433626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a55c9a67ccbf06044d84898140bdec84e82b66ea41537763cca66f4b782ad42c3</originalsourceid><addsrcrecordid>eNp90N9KwzAUBvAgCs7phW9Q8EaFzpM_TZPLMZwKA2_mdUjTVDqytibdoHc-hE_okxjdUFDw6uPAj4_Dh9A5hgkGTm-yCWACTNIDNMIgZJpzCYdoBEBwKjnwY3QSwgoAcE7YCM2Xunm2TV9r54ak9PXWNok2fcyka532iasbGyMew9r68P76No2i0W7oa6NdEvpNOZyio0q7YM_2OUZP89vl7D5dPN49zKaL1FCZ9anOMiM1z40pKuDAWCmYkAIzKEprBLOCFJxbzXBG85xTYzTnFStyQXTJiKFjdLnr7Xz7srGhV-s6GOucbmy7CYrkVDJKOeGRXvyiq3bj499fKs9ERoBGdbVTxrcheFupztdr7QeFQX0uqjK1XzTa650Npu51X7fNN962_geqrqz-w3-bPwBkbYR-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737585203</pqid></control><display><type>article</type><title>Tangentially driven active polar linear polymers—An analytical study</title><source>Scitation (American Institute of Physics)</source><source>Alma/SFX Local Collection</source><creator>Philipps, Christian A. ; Gompper, Gerhard ; Winkler, Roland G.</creator><creatorcontrib>Philipps, Christian A. ; Gompper, Gerhard ; Winkler, Roland G.</creatorcontrib><description>The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead to linear non-Hermitian equations of motion, which are solved by an eigenfunction expansion in terms of a biorthogonal basis set. Our calculations show that the polymer conformations are independent of activity. However, tangential propulsion strongly impacts the polymer dynamics and yields an active ballistic regime as well as an activity-enhanced long-time diffusive regime, which are both absent in passive systems. The polar forces imply a coupling of modes in the eigenfunction representation, in particular with the translational mode, with a respective strong influence on the polymer dynamics. The total polymer mean-square displacement on scales smaller than the radius of gyration is determined by the active internal dynamics rather than the collective center-of-mass motion, in contrast to active Brownian polymers at large Péclet numbers, reflecting the distinct difference in the propulsion mechanism.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0120493</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Eigenvectors ; Equations of motion ; Polymers ; Representations</subject><ispartof>The Journal of chemical physics, 2022-11, Vol.157 (19), p.194904-194904</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a55c9a67ccbf06044d84898140bdec84e82b66ea41537763cca66f4b782ad42c3</citedby><cites>FETCH-LOGICAL-c395t-a55c9a67ccbf06044d84898140bdec84e82b66ea41537763cca66f4b782ad42c3</cites><orcidid>0000-0002-2824-3536 ; 0000-0002-7513-0796 ; 0000-0002-8904-0986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0120493$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Philipps, Christian A.</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G.</creatorcontrib><title>Tangentially driven active polar linear polymers—An analytical study</title><title>The Journal of chemical physics</title><description>The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead to linear non-Hermitian equations of motion, which are solved by an eigenfunction expansion in terms of a biorthogonal basis set. Our calculations show that the polymer conformations are independent of activity. However, tangential propulsion strongly impacts the polymer dynamics and yields an active ballistic regime as well as an activity-enhanced long-time diffusive regime, which are both absent in passive systems. The polar forces imply a coupling of modes in the eigenfunction representation, in particular with the translational mode, with a respective strong influence on the polymer dynamics. The total polymer mean-square displacement on scales smaller than the radius of gyration is determined by the active internal dynamics rather than the collective center-of-mass motion, in contrast to active Brownian polymers at large Péclet numbers, reflecting the distinct difference in the propulsion mechanism.</description><subject>Eigenvectors</subject><subject>Equations of motion</subject><subject>Polymers</subject><subject>Representations</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90N9KwzAUBvAgCs7phW9Q8EaFzpM_TZPLMZwKA2_mdUjTVDqytibdoHc-hE_okxjdUFDw6uPAj4_Dh9A5hgkGTm-yCWACTNIDNMIgZJpzCYdoBEBwKjnwY3QSwgoAcE7YCM2Xunm2TV9r54ak9PXWNok2fcyka532iasbGyMew9r68P76No2i0W7oa6NdEvpNOZyio0q7YM_2OUZP89vl7D5dPN49zKaL1FCZ9anOMiM1z40pKuDAWCmYkAIzKEprBLOCFJxbzXBG85xTYzTnFStyQXTJiKFjdLnr7Xz7srGhV-s6GOucbmy7CYrkVDJKOeGRXvyiq3bj499fKs9ERoBGdbVTxrcheFupztdr7QeFQX0uqjK1XzTa650Npu51X7fNN962_geqrqz-w3-bPwBkbYR-</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Philipps, Christian A.</creator><creator>Gompper, Gerhard</creator><creator>Winkler, Roland G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2824-3536</orcidid><orcidid>https://orcid.org/0000-0002-7513-0796</orcidid><orcidid>https://orcid.org/0000-0002-8904-0986</orcidid></search><sort><creationdate>20221121</creationdate><title>Tangentially driven active polar linear polymers—An analytical study</title><author>Philipps, Christian A. ; Gompper, Gerhard ; Winkler, Roland G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a55c9a67ccbf06044d84898140bdec84e82b66ea41537763cca66f4b782ad42c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Eigenvectors</topic><topic>Equations of motion</topic><topic>Polymers</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philipps, Christian A.</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philipps, Christian A.</au><au>Gompper, Gerhard</au><au>Winkler, Roland G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tangentially driven active polar linear polymers—An analytical study</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>157</volume><issue>19</issue><spage>194904</spage><epage>194904</epage><pages>194904-194904</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead to linear non-Hermitian equations of motion, which are solved by an eigenfunction expansion in terms of a biorthogonal basis set. Our calculations show that the polymer conformations are independent of activity. However, tangential propulsion strongly impacts the polymer dynamics and yields an active ballistic regime as well as an activity-enhanced long-time diffusive regime, which are both absent in passive systems. The polar forces imply a coupling of modes in the eigenfunction representation, in particular with the translational mode, with a respective strong influence on the polymer dynamics. The total polymer mean-square displacement on scales smaller than the radius of gyration is determined by the active internal dynamics rather than the collective center-of-mass motion, in contrast to active Brownian polymers at large Péclet numbers, reflecting the distinct difference in the propulsion mechanism.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0120493</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2824-3536</orcidid><orcidid>https://orcid.org/0000-0002-7513-0796</orcidid><orcidid>https://orcid.org/0000-0002-8904-0986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-11, Vol.157 (19), p.194904-194904
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2737585203
source Scitation (American Institute of Physics); Alma/SFX Local Collection
subjects Eigenvectors
Equations of motion
Polymers
Representations
title Tangentially driven active polar linear polymers—An analytical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tangentially%20driven%20active%20polar%20linear%20polymers%E2%80%94An%20analytical%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Philipps,%20Christian%20A.&rft.date=2022-11-21&rft.volume=157&rft.issue=19&rft.spage=194904&rft.epage=194904&rft.pages=194904-194904&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0120493&rft_dat=%3Cproquest_scita%3E2739433626%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737585203&rft_id=info:pmid/&rfr_iscdi=true