Tangentially driven active polar linear polymers—An analytical study

The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-11, Vol.157 (19), p.194904-194904
Hauptverfasser: Philipps, Christian A., Gompper, Gerhard, Winkler, Roland G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conformational and dynamical properties of isolated flexible active polar linear polymers (APLPs) are studied analytically. The APLPs are modeled as Gaussian bead-spring linear chains augmented by tangential active forces, both in a discrete and continuous representation. The polar forces lead to linear non-Hermitian equations of motion, which are solved by an eigenfunction expansion in terms of a biorthogonal basis set. Our calculations show that the polymer conformations are independent of activity. However, tangential propulsion strongly impacts the polymer dynamics and yields an active ballistic regime as well as an activity-enhanced long-time diffusive regime, which are both absent in passive systems. The polar forces imply a coupling of modes in the eigenfunction representation, in particular with the translational mode, with a respective strong influence on the polymer dynamics. The total polymer mean-square displacement on scales smaller than the radius of gyration is determined by the active internal dynamics rather than the collective center-of-mass motion, in contrast to active Brownian polymers at large Péclet numbers, reflecting the distinct difference in the propulsion mechanism.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0120493