Rectangular eigenvalue problems
Often the easiest way to discretize an ordinary or partial differential equation is by a rectangular numerical method, in which n basis functions are sampled at m ≫ n collocation points. We show how eigenvalue problems can be solved in this setting by QR reduction to square matrix generalized eigenv...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2022-12, Vol.48 (6), Article 80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Often the easiest way to discretize an ordinary or partial differential equation is by a
rectangular numerical method,
in which
n
basis functions are sampled at
m
≫
n
collocation points. We show how eigenvalue problems can be solved in this setting by QR reduction to square matrix generalized eigenvalue problems. The method applies equally in the limit “
m
=
∞
” of eigenvalue problems for quasimatrices. Numerical examples are presented as well as pointers to related literature. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-022-09994-8 |