Rectangular eigenvalue problems

Often the easiest way to discretize an ordinary or partial differential equation is by a rectangular numerical method, in which n basis functions are sampled at m ≫ n collocation points. We show how eigenvalue problems can be solved in this setting by QR reduction to square matrix generalized eigenv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2022-12, Vol.48 (6), Article 80
Hauptverfasser: Hashemi, Behnam, Nakatsukasa, Yuji, Trefethen, Lloyd N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Often the easiest way to discretize an ordinary or partial differential equation is by a rectangular numerical method, in which n basis functions are sampled at m ≫ n collocation points. We show how eigenvalue problems can be solved in this setting by QR reduction to square matrix generalized eigenvalue problems. The method applies equally in the limit “ m = ∞ ” of eigenvalue problems for quasimatrices. Numerical examples are presented as well as pointers to related literature.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-022-09994-8